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We define the problem of automatic instruction interpretation as follows. Given a natural language instruc-
tion, can we automatically predict what an instruction follower, such as a robot, should do in the environment
to follow that instruction? Previous approaches to automatic instruction interpretation have required either
extensive domain-dependent rule writing or extensive manually annotated corpora. This article presents
a novel approach that leverages a large amount of unannotated, easy-to-collect data from humans inter-
acting in a game-like environment. Our approach uses an automatic annotation phase based on artificial
intelligence planning, for which two different annotation strategies are compared: one based on behavioral
information and the other based on visibility information. The resulting annotations are used as training
data for different automatic classifiers. This algorithm is based on the intuition that the problem of inter-
preting a situated instruction can be cast as a classification problem of choosing among the actions that are
possible in the situation. Classification is done by combining language, vision, and behavior information.
Our empirical analysis shows that machine learning classifiers achieve 77% accuracy on this task on avail-
able English corpora and 74% on similar German corpora. Finally, the inclusion of human feedback in the
interpretation process is shown to boost performance to 92% for the English corpus and 90% for the German
corpus.
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1. INTRODUCTION AND MOTIVATION

We define the problem of automatic instruction interpretation as follows. Given an
instruction in natural language, can we automatically predict what an instruction fol-
lower (IF), such as a robot, should do in the environment to follow that instruction?
The problem of interpreting instructions in natural language has been studied since
the early days of artificial intelligence [Winograd 1972]. Mapping instructions into
automatically executable actions would enable the creation of natural language inter-
faces to many applications, such as Web pages [Lau et al. 2009], operating systems
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T. Lau, Savioke, Inc., Sunnyvale, CA, USA; tlau@savioke.com; M. Villalba, University of Potsdam Karl-
Liebknecht-Str 24-25, D-14476 Potsdam, Germany; martin.villalba@uni-potsdam.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 2160-6455/2014/07-ART13 $15.00
DOI: http://dx.doi.org/10.1145/2629632

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 3, Article 13, Publication date: July 2014.

http://dx.doi.org/10.1145/2629632
http://dx.doi.org/10.1145/2629632


13:2 L. Benotti et al.

[Branavan et al. 2009], games [Orkin and Roy 2009], and robots [Kollar et al. 2010]. In
this article, we focus on the task of navigation and manipulation of objects in a spatial
environment [Vogel and Jurafsky 2010; Chen and Mooney 2011].

Current symbolic approaches to the problem, which require intensive rule authoring
to be fit for a new task [Dzikovska et al. 2008], are brittle due to the variance in natural
language present in instructions. Current statistical approaches, on the other hand,
require extensive manual annotations of the corpora used for training [MacMahon
et al. 2006; Matuszek et al. 2010; Gorniak and Roy 2007; Rieser and Lemon 2010].
Manual annotation and rule authoring by natural language engineering experts are
bottlenecks for developing conversational systems for new domains.

This article proposes a fully automated approach to interpreting natural language
instructions to complete a task in a spatial environment based on unsupervised record-
ings of human–human interactions performing that task in that spatial environment.
Given unannotated corpora collected from humans following other humans’ instruc-
tions, our system automatically segments the corpus into labeled training data for a
classification algorithm. Our interpretation algorithm is based on the observation that
similar instructions uttered in similar contexts should lead to similar actions being
taken in the spatial environment. Given a previously unseen instruction, our system
outputs actions that can be directly executed in the spatial environment world, based
on what humans did when given similar instructions in the past. To do this, the system
first infers a formal navigation plan for each observed instruction based on a human
reaction to it. This planning step is used as a normalization to overcome the noise
present in our data. Using this as supervision, it then learns classifiers that can map
novel instructions into navigation plans executable by a (simulated) robot.

The effect of including instructor feedback in the interpretation process is investi-
gated with the result that it can boost performance to 92% for the English corpus and
90% for the German corpus. The instructor provides feedback to the system by rephras-
ing misinterpreted instructions and giving the system the opportunity to reinterpret
the instruction.

The interpretation approach proposed combines different sources of information—
position, area of visibility, language, and spatial actions—to first identify the actions
that are possible and salient in the current situation and then choose the action that is
intended by the instruction giver (IG). The identification of the salient actions greatly
reduces the complexity of the interpretation task allowing for it to be cast as a classifi-
cation problem that can scale to complex spatial environments.

Specifically, we make these contributions:

—A novel model that leverages a large amount of unannotated, easy-to-collect data
from humans interacting in a game-like environment. The model uses an automatic
annotation phase based on artificial intelligence planning, for which two different
annotation strategies are compared: one based on behavioral information and the
other based on visibility information.

—A classification-based approach that combines different sources of information—
position, area of visibility, language, and spatial actions—to first identify the actions
that are possible and salient in the current situation and then choose the action
that is intended by the IG. This approach achieves 77% accuracy on existing English
corpora and 74% on similar German corpora.

—A framework for reinterpretation based on users’ online corrections that achieves
92% accuracy for the English corpora and 90% for the German corpora with just one
correction from the user.

In sum, we introduce a general framework for learning to interpret navigation in-
structions based on unlabeled observations of humans following such instructions.
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The rest of the article is organized as follows. Sections 2 and 3 introduce the general
problem of instruction interpretation in spatial domains and describe the training cor-
pora that we use in this article. Then, Section 4 describes our novel framework for inter-
pretation of instructions, which does planning-based normalization of semantics and
automatic annotation and compares different methods for situated interpretation—
namely, machine learning, information extraction, and machine translation. The eval-
uation results of the different methods proposed in the previous section are presented
in Section 5. Section 6 extends our interpretation framework by integrating online
user corrections. Section 7 situates our work in the context of previous work, and
Section 8 discusses the generalizability and limitations of the proposed approach and
concludes.

2. INSTRUCTION GIVING IN SPATIAL ENVIRONMENTS

Instruction giving in spatial environments involves an IG and an IF who collaborate
to achieve the goal of a task. The task is situated in an environment that has a spatial
dimension such as the real world or a simulated virtual world. The IG gives instructions
to the IF to help him complete the goal of the task (e.g., to find an object). The IF follows
the instructions by moving in the environment in which he is situated and manipulating
objects inside it. There are two main lines of research related to automating instruction
giving in spatial environments: instruction generation and instruction interpretation.
In the instruction generation problem, an automated system plays the role of the
IG [MacMahon et al. 2006; Gargett et al. 2010; Cuayáhuitl and Dethlefs 2011]. In
the instruction interpretation problem, an automated system plays the role of the IF
[Gorniak and Roy 2007; Matuszek et al. 2010; Vogel and Jurafsky 2010; Chen and
Mooney 2011]. In this article, we focus on instruction interpretation.

The challenges in interpreting instructions situated in a spatial environment are
many. We describe them along two dimensions: (1) variation and creativity in natural
language free text and (2) multimodality of situated interpretation.

2.1. Interpreting Free Text Natural Language Instructions in Interaction

Even in rather simple spatial environments, people describe the same route and the
same objects in extremely different ways. It is also well known that when talking
through a chat interface, people use language creatively, sometimes dropping or short-
ening some words or not respecting the usual word order, especially when confronted
with time pressure. This is especially true in instruction-giving settings due to the fact
that the other person is waiting for the instruction.

Next, we present some examples of instructions given by different people for the
same route shown in Figure 1:
(1) out go
(2) walk down the yellwo passage
(3) straight
(4) back to the corridor
(5) ok now the door on the left
(6) take the opening with yellow wall paper

People describe routes using landmarks (4) or specific actions (2). They may describe
the same object differently (5 vs. 6). Instructions also differ in their scope (3 vs. 1).
Moreover, instructions not only contain spelling errors but they also do not follow usual
word order. In sum, navigation and manipulation instructions contain considerable
variation, which makes interpreting them a challenging problem.
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Fig. 1. A screenshot of a virtual world. The world consists of interconnecting hallways, rooms, and objects.

Fig. 2. Instructions depend on the position and orientation of the IF.

2.2. Situatedness: Integrating Language and Vision

The language used in the instructions is not only creative and lexically rich but is also
extremely situated. That is, most instructions cannot be interpreted without taking
into account the spatial environment—in other words, the actions that are affordable
and the objects that are visible in the situation in which the instructions were said.

The position of the IF has a direct effect on the properties included in the referring
expressions, as exemplified by the use of the property closest in the left picture in
Figure 2; likewise, the use of the word right in the picture on the right is appropriate
due to the current orientation of the IF’s camera.

Moreover, the objects currently visible to the IF have an effect on the content of
the instructions, and so does the distance to these objects from the IF’s position. For
instance, the instruction shown in the left picture in Figure 3 includes the complex
referring expression the red you see in the far room, which not only discards the green
button as a potential referent but also specifies that the target is far, whereas the
picture on the right leaves the referring expression implicit due to the visual saliency
of the target (the target is the only visible object).

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 3, Article 13, Publication date: July 2014.



Interpreting Natural Language Instructions Using Language, Vision, and Behavior 13:5

Fig. 3. References to an object depend on other visible objects and distance.

The interpretation approach proposed in this article combines different sources of
information—position, area of visibility, language, and spatial actions—to first identify
the actions that are possible and salient in the current situation and then choose the
action that is intended by the IG.

3. HUMAN–HUMAN CORPORA SITUATED IN VIRTUAL WORLDS

In this section, we describe the particular instruction-giving task and the data that we
use in this article. Our spatial environment consists of three virtual worlds simulating
houses that contain rooms, corridors, furniture, buttons (i.e., switches) that open/close
doors and activate/deactivate alarms, and so forth. Screenshots and a part of a map
of the virtual worlds can be seen in the figures of the previous section. In these worlds,
the IG and the IF collaborate to perform a treasure-hunting task that involves cracking
the combination of a safe by interacting with objects in different rooms. The task can
be lost if the IF triggers an alarm by stepping on red tiles spread around the world or
by interacting with the wrong objects. The IF can move around in the virtual world
but has no knowledge of the map of the world or the specific behavior of objects within
that world (e.g., which buttons to press to open doors or deactivate alarms). The IG has
access to a complete map of the world with information on the effects of the actions on
the different objects and types instructions to the IF to guide him to accomplish the
task. In this setup, the IF and IG interact in real time.

With these three virtual worlds, the GIVE-2 corpus [Gargett et al. 2010] was col-
lected to help natural language generation system developers on the natural language
generation shared task known as the GIVE Challenge [Koller et al. 2010]. In this arti-
cle, we use the corpus not for generating but for interpreting instructions. The GIVE-2
corpus consists of the collected interaction logs, which record the experimental session
with enough detail to allow for a smooth replay. Specifically, interaction logs include
all of the instructions sent by the IG, all of the actions performed by the IF, and the
total time of the session. Furthermore, the IF’s position and orientation was logged
every 200ms, making it possible to extract information about movements in response
to instructions and other events. The IF was instructed to press a “help key” if an in-
struction was not understood. In this case, the IG was supposed to rephrase his or her
instruction.

The GIVE-2 corpus was recorded using the GIVE-2 corpus platform described in
Gargett et al. [2010]. It is important to mention, however, that most modern game
engines include a “replay” feature, which could be used to collect a corpus similar to
the GIVE-2 corpus. This feature allows the player to record a sequence of game play
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Fig. 4. The 10 most frequent verbs, nouns, prepositions, and adjectives found in the English corpus.

and then watch it over again, perhaps from a different viewpoint or in slow motion.
Combined with a facility for logging instructions, this replay facility could easily be used
to collect large amounts of training data similar to the GIVE-2 corpus. In Section 8,
we discuss the generalizability of our data collection and training environment in
more detail, and we consider how much of a development overhead it represents in
comparison to other forms of data collection or annotation.

The GIVE-2 corpus consists of two corpora: one from German speakers and one
from English speakers. The data was collected from 15 German-speaking pairs and
21 English-speaking pairs. The participants were mostly students from one German
and one U.S. university. All 30 German-speaking participants were native speakers of
German—17 were female and 13 male. Of the 42 English-speaking participants, 35
were native English speakers, whereas the others self-rated their English skills as
near-native or very good—16 were female and 26 male.

The German corpus obtained in this way consists of 2,763 instructions, spread over
45 rounds. On average, each round contained 61.4 instructions (standard deviation
(SD) = 24.0) and took about 752s (SD = 245.8). For the English corpus, there were 63
rounds consisting of 3,417 instructions in total. Rounds consisted on average of 54.2
(SD = 20.4) instructions and took about 553s (SD = 178.4). The German corpus con-
tained 1,531 distinct words, whereas the English corpus contained 1,293. Instructions
contained 5 words on average.

Figure 4 show the 10 most frequent verbs, nouns, prepositions, and adjectives found
in the English GIVE-2 corpus. The lexical variability of the corpus is large, and its
distribution is biased toward spatial words grounded in the task and the spatial envi-
ronment where the task is situated.

4. LEARNING TO INTERPRET HUMAN-GENERATED INSTRUCTIONS

Our method for instruction interpretation consists of two phases: annotation and inter-
pretation. Annotation is performed only once and consists of automatically associating
each IG instruction with an IF reaction. Interpretation is performed every time the
system receives an instruction and consists of predicting an appropriate reaction given
reactions previously observed in the corpus.

Our method is based on the assumption that a reaction is a direct result of the
instruction that occurred just prior to it. In other words, we assume that the IF re-
action makes explicit his interpretation of the instruction. Therefore, if two different
instructions precede the same reaction, then they must be paraphrases of each other.
We define paraphrases as instructions that cause the same reaction even though their
semantics can differ because they use different tools to reach the same goal. For in-
stance, Figure 5 shows a case in which references to different landmarks (the picture

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 3, Article 13, Publication date: July 2014.



Interpreting Natural Language Instructions Using Language, Vision, and Behavior 13:7

Fig. 5. Both figures show paraphrases of the same instruction. They use different vocabulary but commu-
nicate the same goal.

and the red tile1) are used to make the follower press a green button. The semantics of
both instructions is different, but their goal is the same.

By learning from previously seen instructions and reactions, our algorithm can pre-
dict reactions for previously unseen instructions.

4.1. Annotation Phase

The key challenge in learning from massive amounts of easily collected data is to
automatically annotate an unannotated corpus. Our annotation method consists of two
parts: first, segmenting a low-level interaction trace into instructions and corresponding
reactions, and second, discretizing those reactions into canonical action sequences.

Segmentation enables our algorithm to learn from traces of IFs interacting directly
with a virtual world. Since the IF can move freely in the virtual world, his actions are
a stream of continuous behavior. Segmentation divides these traces into reactions that
follow from each instruction of the IG. Consider the following example starting at the
situation shown in Figure 1:

IG(1): go through the yellow opening
IF(2): [walks out of the room]
IF(3): [turns left at the intersection]
IF(4): [enters the room with the sofa]
IG(5): push the green button by the door
IF(6): [turns to make the green button visible]
IF(7): [pushes the green button]

It is not clear whether the IF is doing 〈3, 4〉 because he is reacting to 1 or because he is
being proactive. Although one could manually annotate this data to remove extraneous
actions, our goal is to develop automated solutions that enable learning from massive
amounts of data.

We decided to approach this problem by experimenting with two segmentation
algorithms: (1) a full segmentation that outputs all of the IF’s behavior up until a
new instructions is given and (2) a partial segmentation that outputs only those ac-
tions taken in the context visible to the IF at the time the instruction was given.

We define behavior segmentation (BHV) as follows. A reaction rk to an instruction ik
begins right after the instruction ik is uttered and ends right before the next instruction

1In the picture, the red tile is located in the visible hallway; it is an alarm that prevents the IF from using
that hallway.
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ik+1 is uttered. In the example, instruction 1 corresponds to the reaction 〈2, 3, 4〉. We
define visibility segmentation (VIS) as follows. A reaction rk to an instruction ik begins
right after the instruction ik is uttered and ends right before the next instruction
ik+1 is uttered or right after the IF leaves the area visually accessible from where
ik was uttered. We define the area of visual accessibility with respect to a position
as the area that is visible from all angles in that position (by turning 360◦). In the
example, instruction 1’s reaction would be limited to 〈2〉 (〈3, 4〉 are discarded) because
the intersection is not visible from where the instruction was uttered. The reaction
to 5 would be 〈6, 7〉, because both of those actions are taken within the same visually
accessible area.

The VIS segmentation is based on the empirical observation that in situated inter-
action, the content of the instructions is constrained by visually accessible affordances
[Gibson 1979; Stoia et al. 2006]. Visually accessible affordances are those actions exe-
cutable from the current situation that refer to objects that are directly visible or can
be made visible by turning around in the current position. Stoia et al. [2006] show that
when generating instructions, the IG prefers to navigate the IF to a position where
the objects to be manipulated are visually accessible instead of giving complex high-
level instructions. Based on this observation, it is likely that an IG only expects an IF
to perform actions within his field of view, thus motivating our definition of the VIS

segmentation method.
The BHV and VIS methods define how to segment an interaction trace into instructions

and their corresponding reactions. However, users frequently perform noisy behavior
that is irrelevant to the goal of the task. For example, after hearing an instruction, an
IF might step back to have a better view of the room before following the instruction.
A reaction should not include such irrelevant actions. In addition, IFs may accomplish
the same goal using different behaviors: two different IFs may interpret “go to the pink
room” by following different paths to the same destination. We would like to be able to
generalize both reactions into one canonical reaction.

To accomplish this, our approach discretizes reactions into higher-level action se-
quences, reducing noise and variation. Our discretization algorithm uses an automated
planner and a planning representation of the task. This planning representation
includes (1) the task goal, (2) the actions that can be taken in the virtual world, and
(3) the current state of the virtual world. Using the planning representation, the
planner calculates an optimal path between the starting and ending states of the
reaction, eliminating all unnecessary actions. Although we use the classical planner
FF [Hoffmann 2003], our technique could also work with other classical planners [Nau
et al. 2004] or other nonclassical planning techniques such as probabilistic planning
[Bonet and Geffner 2005]. It also does not depend on a particular discretization of the
world in terms of actions.

Now we are ready to define canonical reaction ck. Let Sk be the state of the virtual
world when instruction ik was uttered, Sk+1 be the state of the world where the reaction
ends (as defined by BHV or VIS segmentation), and D be the planning domain repre-
sentation of the virtual world. The canonical reaction to ik is defined as the sequence
of actions returned by the planner with Sk as initial state, Sk+1 as goal state, and D
as planning domain. Note that Sk+1 depends on whether BHV or VIS segmentation is
used.

The annotation of the corpus then consists of automatically associating each
instruction to its (discretized) reaction using an automated planner. We annotated in
this way the 3,417 instructions of the English corpus and the 2,763 instructions of
the German corpus. We found that 22% of the English instructions and 17% of the
German instructions contained an empty reaction. A reaction is empty if the IF did not
execute an action in response to it and waited for another instruction. This is the case
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Fig. 6. Sample instruction groups for depicted situation. Arrows show the reaction associated with each
group. Each group corresponds to a visually perceived affordance.

in two possible situations, either when the instruction was not understood and the
IF asked for a rephrased instruction or when the instruction explicitly indicated that
the IF should stop moving. For training and evaluating our algorithms, we use those
instructions that do not have an empty reaction: 2,665 English instructions and 2,293
German instructions. A fragment of the annotated corpus is shown in the Appendix.

Once the corpus has been annotated, it can be used by the interpretation phase to
develop automatically generated reactions to human instructions.

4.2. Interpretation Phase

The annotation phase results in a collection of (ik, ck) pairs. The interpretation phase
uses these pairs to interpret new instructions in three steps. First, we filter the set of
pairs into those whose reactions can be directly executed from the current state. Second,
we group the filtered pairs according to their reactions into what we call paraphrase
groups. Third, we select the group with instructions most similar to the new instruction
and then output that group’s reaction. Figure 6 shows the output of the first two
steps: three groups of pairs whose reactions can all be executed from the IF’s current
position.

The input of the filtering step includes the corpora described in Section 3, annotated
as explained in Section 4.1, and a planning representation [Nau et al. 2004] of the
state of the virtual world at the moment in which the instruction to be interpreted is
received, designated as Sk. State Sk includes the position of the IF and the state of all
objects in the virtual world, such as which alarms are active and which doors are open.

The filtering step considers all possible (ik, ck) pairs in the corpus and removes those
whose reaction ck is not applicable in Sk. To determine this, our algorithm simulates
the execution of plan ck using Sk as the initial state. If any precondition of ck cannot
be met at some point during the simulated execution, then we say that ck cannot be
executed in Sk, and therefore we filter this (ik, ck) pair from consideration. Those pairs
that remain after filtering are the output of the filtering process.

Filtering is computationally expensive. To reduce the amount of computation re-
quired, we applied a situated optimization technique that prefilters the corpora to
those instructions uttered from the same visually accessible region as the instruction
being interpreted. We precompute visually accessible regions by partitioning the vir-
tual world into adjacent areas such that all points from each area are visible from all
other points in that area. After applying this optimization, the filtering step can be
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performed in real time. A sample output of the filtering step is illustrated by all of the
instructions in Figure 6.

The next step of our algorithm is grouping. In this step, all filtered instructions
are organized into groups of instructions with the same annotated reaction. Since
all instructions in a group are associated with the same reaction, they must, by our
definition of paraphrase, be paraphrases of each other.

The third step of our algorithm is to select the group whose reaction is the intended
by the IG’s instruction. Given the groups that have been formed in the previous step,
our algorithm selects the one whose paraphrases are most similar to the new incoming
instruction. We define similarity in terms of language- and visibility-based features
that we describe next. We then output the selected group’s reaction as the system’s
reaction to this instruction.

We treat this third step as a classification problem. In this article, we compare six
different classification algorithms grouped into three different methods, based on word
similarity, machine translation, and machine learning.

4.2.1. Word Similarity–Based Group Selection. The first set of methods use nearest-
neighbor classification with three different similarity metrics. Jaccard and Overlap co-
efficients measure the degree of overlap between two sets, differing only in the normal-
ization of the final value [Nikravesh et al. 2005]. Levenshtein distance is a string metric
for measuring the amount of differences between two sequences of words [Levenshtein
1966]. We implement all of these algorithms at the unigram level, considering an in-
struction as a set of words. The Jaccard coefficient measures similarity between sets
and is defined as the size of the intersection divided by the size of the union of the
sets. The Overlap coefficient is defined as the size of the intersection divided by the
maximum of the sizes of sets. We calculate Jaccard and Overlap for each (instruction,
paraphrase) pair, and we average over all paraphrases in each paraphrase group to
get the score for that paraphrase group. We select the paraphrase group with the high-
est average score. We calculate the Levenshtein distance by associating a cost of 1
to each deletion and insertion, and a cost of 2 to each substitution. We select the set
of paraphrases whose average Levenshtein distance to the interpreted instruction is
lowest.

Let us compare these three methods by means of an example. Suppose that the
instruction red is to be interpreted, and there are two groups of paraphrases whose
reactions can be executed in the current situation. Each paraphrase group contains
only one instruction—namely, blue and hit the red one.2 The Levenshtein distance
between red and blue is 2 and that between red and hit the red one is 3, so blue is
selected as the paraphrase. The Jaccard index between red and blue is 0 and that
between red and hit the red one is 1

4 , so hit the red one is selected. The Overlap index is
the same as the Jaccard index for this example. This example illustrates the fact that
Levenshtein distance penalizes differences in length between the instructions, and this
is not suitable for our data in which speakers frequently drop words and use ellipses.
Therefore, we expect Jaccard and Overlap algorithms to have a better performance
than Levenshtein distance.

4.2.2. Machine Translation–Based Group Selection. The next classification method employs
a strategy in which we considered each group as a set of possible machine translations
of our instruction, using the BLEU metric [Papineni et al. 2002] to select the group
that reports the highest score. The BLEU metric was proposed in the machine transla-
tion area for evaluating the quality of text that has been machine translated from one

2In our data, there is an average of 20 instructions per paraphrase group, but we restrict the example to one
for illustration purposes.
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Table I. Accuracy Comparison between BHV and VIS
Segmentation on the English and German Corpora

English Corpus German Corpus
Algorithm BHV VIS BHV VIS

Levenshtein 34% 52% 43% 54%
Jaccard 45% 70% 53% 69%
Overlap 44% 70% 51% 69%
BLEU 44% 67% 54% 66%
DT 48% 73% 57% 70%
SVM 50% 77% 59% 74%

natural language to another. BLEU is a modified form of n-gram precision that com-
pares a candidate translation against multiple reference translations that are supposed
to be correct. We consider the instruction that we are interpreting as the candidate
translation and the paraphrase sets as the reference translations. BLEU is calculated
as the sum (for each distinct word in the candidate translation) of its ratio of appear-
ance in the candidate translation. This ratio is calculated by dividing the word clipped
occurrences by the length of the candidate translation. The word clipped occurrences
are calculated as the minimum between the number of occurrences of the word in
the candidate translation and the maximum number of occurrences of the word in a
reference translation.

For example, suppose that we are interpreting push the blue button, and the cor-
responding paraphrase group is {push it, the blue one}. Then, the BLEU metric is
1
4 + 1

4 + 1
4 + 0

4 = 3
4 . BLEU is equal to one when all words in the candidate appear in

some reference and equal to zero when none of them appears. Since BLEU, Jaccard,
and Overlap calculate variations of n-gram precision, we expect them to exhibit similar
performance. We empirically test this hypothesis in the next section.

4.2.3. Machine Learning–Based Group Selection. Finally, we trained a support vector ma-
chine (SVM) classifier [Cortes and Vapnik 1995] and a decision tree (DT) classifier
[Murthy 1998] using the unigrams of each paraphrase and the position and visibility
area of the IF as features, and setting their group as the output class. We implemented
the LIBSVM wrapper described in Chang and Lin [2011] with a radial kernel and
default parameters, and the DTs were implemented using the classifier J48, as used
in the machine learning WEKA package [Hall et al. 2009].

Since the machine learning–based classifiers make use of additional information
beyond the words in each paraphrase group, we expect them to perform better than
the previous two methods, which use only word similarity.

In the next section, we compare the performance of these two machine learning
methods to the other algorithms, and we describe the model learned from our data.

5. ALGORITHM COMPARISON AND EVALUATION

For the evaluation phase, we annotated both the English and German corpora entirely
and then did a fivefold partition and calculated the average on the five partition results.
For each pair (ik, ck) in the testing set, we used our algorithm to predict the reaction to
the selected instruction and then compared this result against the annotated reaction.
Since the reactions are canonical, the prediction is considered correct if the predicted
reaction is identical to the annotated one. Table I shows the results.

Since each virtual world contains thousands of possible actions, the possibility of
predicting the intended action without information is low. However, if you consider
the position of the player and the afforded actions from that position, there are on
average 4.7 actions per position in the virtual worlds, giving a chance of selecting
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the right action without considering the content of the instruction of 21%. Hence, the
affordability baseline accuracy is 21%.

Comparing the BHV and VIS segmentation strategies, VIS obtains better results than
BHV for all algorithms (the differences are statistically significant, p < 0.01). After
performing a manual error analysis of the BHV classification results, we concluded that
the problem with this segmentation strategy is that it splits groups of instructions
that have the same meaning. Navigation instructions are frequently underspecified
in that they do not explicitly specify the exact final location that is intended. Take,
for instance, the instructions (1) exit the room and (2) go out as if uttered from the
IF position in Figure 1, and suppose that after exiting the room, the IF of (1) takes
the left corridor but the IF of (2) takes the right corridor. As a result (1) and (2)
would be correctly considered as paraphrases by the VIS algorithm but incorrectly
considered as instructions with different meaning by the BHV algorithm. A correct
segmentation strategy is crucial for the performance of our interpretation classifiers
since it determines the training data.

Given the size of our dataset, the differences in algorithm performance reported in
Table I are statistically significant when greater than 2.6 (p < 0.05). The best-
performing algorithms are the SVM and DT machine learning methods. Their per-
formance is always better than the rest in a statistically significant way (p < 0.05). As
we anticipated in the previous section, we believe that this is because these algorithms
are able to integrate information from different sources (visibility, reaction, and lan-
guage information) into one classification model. They are able to learn, for instance,
that spatial words such as left, right, straight, and so on, have different meanings ac-
cording to the orientation of the IF. Furthermore, they capture the fact that synonyms
such as push and press indicate that the user has to manipulate a button. It is also
interesting to see how a DT is trained on hundreds of features (all unigrams in the
paraphrase groups plus visibility features) but includes only a couple dozen features
in each learned model.

Summing up, the machine learning methods are able to learn the words that are
relevant for the corpus domain, as well as the interplay between the visibility area and
its effect on the language used.

We also evaluated human performance on the English corpus given the same type
of information that is accessible to the system—namely, current position and visibility
area of the player plus input instruction, but not conversational context. We asked
two human annotators to independently annotate the instructions from the English
corpus and obtained 81% as their average accuracy (with respect to the IF’s reaction)
and a Cohen Kappa of 0.75, which is considered very good [Carletta 1996]. Annotators’
disagreements have a high correlation (.88) to the instructions that are not correctly
interpreted by our best algorithm (VIS with SVM). We performed an error analysis
and found that almost all problematic instructions either required the conversational
context to be interpreted or made references to previous actions. In other words, they
required access to the interactional common ground of the IG and IF. Examples of such
instructions are go back and keep going, which require knowledge about the action
executed right before the current one; exit the way you entered and press the green
button again, which require knowledge about actions executed previously during the
interaction; and yes and click it, which require knowledge about the action or object
that was in the interactional focus at that point during the interaction.

Due to the fact that our best-performing algorithm is only 4 points under human
performance when no conversational context is available, we believe that no major
improvement would be gained from using natural language processing methods such
as word order similarity measures instead of using just unigram information as we
do. In some initial experiments, we used n-grams of up to size four, and the results
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consistently decreased. We believe that this is due to the loose word order that the
speakers use in the corpora considering its chat-based nature and the time-constrained
nature of the interaction. Moreover, the utterances in the corpora are quite short, with
only five words on average; therefore, we believe that methods such as latent semantic
analysis would not have an impact on overall performance. When interpreting longer
and less noisy instructions, such methods may prove useful, such as on data used by
Branavan et al. [2009], who developed a system that learns to follow Windows Help
guides. The GIVE is free-form conversational English/German, whereas the Windows
instructions are written by a professional.

We compared human annotations to our automatic VIS segmentation annotations.
Only 5% of the instructions were considered by a human to have a longer reaction that
that annotated by the automatic VIS segmentation strategy. This means that 72% of
the instructions interpreted by the VIS with SVM algorithm reached the final goal of
the instruction, whereas 5% of the instructions started to react in the correct direction
but did not reach the final goal.

6. ONLINE USER CORRECTIONS

When humans give instructions in a situated setting, they monitor the interpretation
of their instructions by observing the actions of the interpreter; if the interpreter mis-
understands an instruction, the instructor can correct him. Empirical studies [Purver
2004] show that most corrections come in the form of rephrases (more than 80% in this
study) of the original instruction. If one instruction does not work, the IG tries again
by rephrasing his instruction until the IF is able to perform the correct reaction.

To the best of our knowledge, previous work in instruction interpretation does not
process online corrections. In this section, we describe how we have extended our
instruction interpretation algorithm to incorporate online IG corrections to increase
our system’s accuracy—that is, the automated IF’s accuracy.

Next, we first explain our method for reinterpretation of instructions by incorporating
corrections and then describe our evaluation of this method.

6.1. Leveraging Corrections

We have extended our framework to include a “cancel” button that indicates to the
system that the reaction it has chosen to perform is incorrect and “rewinds” the posi-
tion of the IF to where the misinterpreted instruction was received. The IG (a human
user) can then issue a second instruction, which is assumed to be a paraphrase of her
original instruction. The system will then reinterpret the original instruction by com-
bining its interpretation with the interpretation of the new instruction received. This
reinterpretation is done in two steps. First, the paraphrase group previously selected
is discarded. Then, the scores obtained for the misinterpreted instruction and the new
one are averaged. This algorithm is inspired by the belief-tracking techniques used
for speech recognition [Williams and Young 2007]. In this area, previous hypotheses
of the speech recognizer are preserved, and their ranking is combined with the new
hypothesis.

If the new instruction results in the correct response being generated (indicated by
the user neglecting to push the cancel button before issuing the next instruction), then
the system removes this new instruction and reaction pair from the test set and adds
it to the training set so that it can react correctly next time.

We believe that this form of human feedback and online learning, which mimics
the interactive feedback available in human–human interaction, enables the system
to react more quickly and correctly to user instructions. In the following subsection,
we present an empirical evaluation measuring how well system performance improves
with user corrections.

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 3, Article 13, Publication date: July 2014.



13:14 L. Benotti et al.

Fig. 7. Accuracy values with corrections over the English corpus.

6.2. The Impact of Corrections

In order to compare the results with and without user corrections, we have devised
a new method for measuring the impact of user corrections on system performance,
inspired by evaluation methodologies for online learning from time series data [Gama
et al. 2009], that takes advantage of the same corpora used for evaluation in the
previous section.

We begin by splitting the corpus into two equal halves: a training set and a test set.
The training set is input into the annotation phase of our algorithm to construct a set
of (ik, ck) pairs. We do the same for the test set, constructing a set of (ik

′, ck
′) pairs for

the test set. Starting from the training set, we then iteratively run the interpretation
phase using the test set as input until a termination condition is reached. For each
interpretation phase, the system is given one new instruction ik from the test set, and
the system’s reaction interp(ik) is compared to the correct reaction ck. If the system
produced the correct reaction, we mark this example as successful, add this example
to the training set, and continue with the next instruction.

If the system produces an incorrect reaction, then we simulate the user hitting the
“cancel” button and providing an alternate instruction with the same meaning (i.e., the
same reaction) as follows. Since the user knows the reaction that he intended, he can
produce an alternate instruction with the same reaction of the misinterpreted one. To
simulate the production of an instruction with the same meaning, during evaluation,
we select from the test set an (instruction, reaction) pair (ik

′, ck
′) such that ck

′ = ck. If
interp(ik

′) = ck, then the system produced the correct reaction given the new instruction.
In this case, we mark the interaction containing both instructions (the initial one and
the alternate instruction) as successful. Both instructions are removed from the test
set and added to the training set.

This evaluation methodology is inspired by evaluation methodologies for online
learning from time series data [Gama et al. 2009]. The test set is fixed, but the system
under test changes during this measurement process, because we are simulating an
environment in which user feedback during system usage enables the system to im-
prove its performance. We measure the overall accuracy of this evolving system as a
proxy for how users might experience its performance in a deployed setting.

The algorithm thus explained was given two tries to select a correct reaction: the
original instruction plus one alternate. We can also increase the system’s chances of
selecting a correct reaction by giving it up to four tries. Figure 7 shows the accuracy
for each of the classification methods as the number of tries increases from one (no
corrections) to four on the English corpus. The performance on the German corpus
evolves in a similar way.
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Fig. 8. Number of interactions for each algorithm with corrections over the English corpus.

As expected, accuracy increases as the number of tries increases. The best algorithm
(SVM) reaches 92% with just one correction from the IG in the English corpus and 90%
on the German corpus.

We define the accuracy of the system as the fraction of successful interactions divided
by the total number of interactions. We define an interaction as a set of utterances with
the same reaction. An interaction may contain between one and four utterances, de-
pending on how many tries each algorithm needs to successfully interpret the user
intention. Since our test set contains a fixed number of utterances, the number of
interactions decreases as the number of tries increases. Figure 8 shows the number
of interactions for each algorithm plotted against the number of tries. With the same
number of tries, better algorithms have a slightly higher number of interactions be-
cause they need fewer alternate instructions to get the correct reaction. This metric
reflects a user’s experience when using our system. It measures the percentage of cases
in which the system was able to actually understand the user’s intention.

It should be noticed that in this experiment, we only simulate an interaction in which
user corrections occur, and we assume that randomly sampled paraphrases are suitable
corrections. In an actual interaction, corrective utterances are likely to be related to
the original instruction. For example, they may avoid the use of words that may have
caused the misunderstanding, or they may be elliptical to the original utterance. Our
evaluation methodology has the limitation of not being able to capture this relation.
We intend to explore actual interactive evaluations in future work.

7. RELATED WORK

The problem of interpreting instructions in natural language has been studied since
the early days of artificial intelligence with systems such as SHRDLU [Winograd 1972].
SHRDLU was one of the earliest systems to use a formal natural language grammar
to parse instructions and map them into automatically executable actions. Since then,
many other such symbolic systems have been developed [Koller et al. 2004; MacMahon
et al. 2006; Dzikovska et al. 2008; Benotti 2009].

The main advantage of such systems is that their syntax–semantics interfaces are
formally defined and deep meaning representations of the instructions can be built.
Therefore, symbolic systems are readily portable to new situations inside the same
domain. For example, in the GIVE domain, if a symbolic system can interpret the
instruction hit the one to the left of the chair, it will probably be able to interpret hit
the one to the right of the chair. This advantage is particularly useful if the system is
to be used in different situations inside the same domain whose characteristics cannot
be predicted (or are too many to be modeled) at design time.
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The main disadvantage of symbolic systems is that they are brittle due to the lex-
ical and grammatical variance found in conversational language. As a result, some
authors report very low coverage when interpreting natural language instructions
using formal grammars. For example, Lau et al. [2009] found that only 3% of crowd-
sourced instructions describing how to accomplish certain tasks on the Web (such
as creating a webmail account or buying online) were successfully interpreted us-
ing formal grammars. Other authors report a much better coverage using symbolic
methods. For example, MacMahon et al. [2006] found that 61% of the instructions
were correctly followed by a grammar-based system. The difference in the results
can be explained by two factors. First, the corpus used by Lau et al. [2009] is noisy
and conversational, whereas the corpus used by MacMahon et al. [2006] contains full
grammatical sentences. Second, the grammar used by MacMahon et al. [2006] in-
cludes many semantic language patterns such as termination conditions like “Turn
so that you see a chair in front.” Summing up, current symbolic approaches to in-
struction interpretation require intensive grammar authoring to be fit for a new
domain.

To address the coverage problem, statistical semantic parsers have been used in the
area of natural language interpretation. Semantic parsers map utterances directly from
surface form into their logical form without the need of a syntax–symantics interface.
They are typically trained from examples of utterances annotated with semantic logical
forms [Rieser and Lemon 2010; Kwiatkowski et al. 2010; Jones et al. 2012]. This
approach improves the coverage while retaining the portability advantage of symbolic
approaches. The main disadvantage of this approach is that this type of annotation is
expensive, as it must be done by people who are not only domain experts but are also
proficient in the semantic formalism used.

Recent research has investigated the problem of learning to interpret natural lan-
guage utterances without the need for logical form annotations. In general, the method-
ology used is to learn the correspondence of two natural inputs such as question–answer
pairs, instructions–world reaction, and so forth. One such approach has been proposed
for interpreting questions [Liang et al. 2013]. The goal of this work is to learn a seman-
tic parser from question–answer pairs, where the logical form is modeled as a latent
variable. Other researchers have also pushed in this direction in various ways: learn-
ing a semantic parser based on bootstrapping and estimating the confidence of its own
predictions by interacting with the world [Goldwasser et al. 2011], learning a semantic
parser from user interactions with a dialog system [Artzi and Zettlemoyer 2011], and
learning to execute natural language instructions from just a reward signal using rein-
forcement learning [Branavan et al. 2009; Vogel and Jurafsky 2010; Goldwasser et al.
2011]. Generally, supervision from the world is indirectly related to the learning task,
but it is often much more plentiful and natural to obtain. Hence, all of these meth-
ods retain the portability advantage of other approaches and require cheaper forms of
supervision than supervised learning of semantic parsers.

The performance of such systems vary from one domain to the other (e.g., instruction
giving in spatial domains vs. question answering domains), so our results are not
comparable to them. Our work is the most similar to that of Chen and Mooney [2011].
Their system also learns to follow navigation instructions from pairs of instructions and
map traces (which includes visibility information) with no prior linguistic knowledge.
In situated instruction giving, the integration of linguistic information with visual
and physical contextual information is crucial due to the elliptical characteristic of
language as we discussed in Section 2.

However, there are subtle but important differences between the work of Chen and
Mooney [2011] and ours. To begin with, their method retains the portability advantage.
This makes it more suitable to be applied in dynamic domains as mentioned in the
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Fig. 9. A screenshot of a virtual world. Many objects of the same type are present in the world.

beginning of this section. In contrast, our approach requires less manual supervision.
Their segmentations must be performed manually and the canonical plans annotated
by hand [Chen 2012]. Our system performs segmentation and annotation automati-
cally, providing a significant benefit despite being unable to predict unseen reactions.
Moreover, they work on simpler worlds. In particular, the references to objects are not
ambiguous since all objects in the world are different. We intend to be able to interpret
instructions on realistic house-like worlds that contain many objects of the same type
and require the use of multiple types of properties to be able to distinguish them (e.g.,
see a screenshot of a complex world in Figure 9). Finally, their instructions were not
collected in an interactive setup; as a result, their instructions are more structured
and less elliptical. In the corpus that they use, people describe complete tasks in a dis-
course that the other person follows without interaction. As a consequence, language
and action are not aligned, and they have to align and segment them manually before
being able to learn from them.

An interesting similarity between Chen and Mooney [2011] and our proposal is that
both approaches can be used not only for interpretation but also for generation of
natural language [Chen et al. 2010; Benotti and Denis 2011].

The framework that we present in this article learns from conversational data in
which instructions are collected while a person gives instructions and another person
follows them in real time. A limitation of our approach is that corpora in exactly
the same spatial domains are required for the approach to be effective. However, our
approach is able to use data that is widely available instead of collecting our own, such
as corpora of gamers playing online where language and action co-occur [Leuski et al.
2012; Small et al. 2011]. If corpora in the required virtual worlds are not available
for a particular application, its collection is simple and inexpensive since no trained
annotators are required—just a person playing the role that the system will need to
play. We further discuss this issue in the next section.

This article reports on an expanded version of work originally published as a short pa-
per [Benotti et al. 2012]. Relative to the prior publication, we provide significantly more
details about the algorithms and add a new German corpus to the evaluation, showing
that the empirical results are similar to those previously obtained with an English-
language corpus. Moreover, we include a fivefold cross-validation that makes our re-
sults more robust. We also add visibility features to our machine learning algorithms,
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which considerably improve their performance. We experiment with a new algorithm
(namely, DTs), which gives us insights on what the algorithm is learning. Finally,
our human evaluation gives us an upper bound to what our algorithm is expected to
learn.

8. DISCUSSION AND CONCLUSIONS

We have presented an approach to instruction interpretation that learns from unanno-
tated logs of humans following instructions in a virtual world. Our empirical analysis
shows that our best algorithm achieves 77% accuracy on this task, with no man-
ual annotation required. When user corrections are added, accuracy goes up to 92%
for just one correction. We consider our results promising, as similar state-of-the-art
approaches to instruction interpretation [Chen and Mooney 2011] report only 55%
accuracy on manually segmented data.

The primary benefit of our approach is that it requires no manual corpus annotation,
thus enabling use of larger corpora than traditional statistical approaches. Having
said this, a question that remains is how widely applicable our approach is and what
its requirements are. We require a capturing interface to log IF/IG behavior, and we
need a large number of people to participate. Fortunately, these interfaces are read-
ily available. Most multiplayer online games such as World of Warcraft and Counter
Strike, among many others, already offer logging capabilities that provide the required
capturing interface (in the gaming community, this is known as replay). Previous work
has shown that large corpora can be crowdsourced using this technique not only for
games and online worlds [Small et al. 2011; Orkin and Roy 2007] but also for real-world
simulations useful for generating robot behavior [Chernova et al. 2011].

In addition, we also require a visibility model and an action planner. Visibility models
already exist in game engines to render only the portion of the world visible from the
player’s current position. For the planner, we use Fast-Forward [Hoffmann 2003], which
typically returns a plan in the GIVE domain in under 15ms. However, the in-game
planning capabilities of nonplayer characters can also be used for this purpose, with
the extra advantage of being optimized for performance in that virtual world.

To sum up the limitations: our approach requires the collection of detailed cor-
pora of human behavior, but the tools to collect these corpora already exist in on-
line gaming systems. Although our approach is limited to the same virtual world
in which the corpora were collected, the availability of collection tools means that our
approach can scale quickly to new worlds. We intend our contribution to provide a valu-
able alternative in the spectrum between manual annotation and symbolic rule-based
approaches.

An additional line for future work is to consider common ground [Clark 1996] features
such as the actions performed by the IF before receiving the instruction and the objects
that were under linguistic focus in the previous instructions.

Although we have presented our approach in the context of 3D virtual worlds, similar
types of instruction following are seen in other domains such as the Web [Lau et al.
2010], massively multiplayer online games, and human–robot interaction. In future
work, we plan to apply our instruction interpretation algorithm to these domains and
compare its performance.

Finally, a note about performance. Although our approach is computationally inten-
sive, it scales well thanks to filtering of the actions that are possible at the player’s
current location. The average interpretation time is 158ms (SD 173ms) on an Intel
Core i3 in the GIVE worlds used. Due to the locality filtering, we do not expect our
approach to degrade on bigger worlds and datasets.
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APPENDIX: AUTOMATICALLY ANNOTATED FRAGMENT OF THE GIVE CORPUS

Utterance: make a left and exit the room
Visible objects: 〈button2,chair1〉
Reaction: 〈move(b2-room-1-9,room-1-9), move(room-1-9,room-1-8), move(room-1-8,room-1-7),

move(room-1-7,room-1-6), move(room-1-6,room-1-5), move(room-1-5,d3-room-1-5)〉
Utterance: enter
Visible objects: 〈door3,window4,button3〉
Reaction: 〈move(d3-room-1-5,d3-room-2), move(d3-room-2,room-2)〉
Utterance: go into the room on the right
Visible objects: 〈alarm2,door1,door6,button3〉
Reaction: 〈move(room-2,d6-room-2), move(d6-room-2,a2-d6-room-3), move(a2-d6-room-3,room-3)〉
Utterance: push the green button to the left of the red button
Visible objects: 〈door11,button5,button6〉
Reaction: 〈move(room-3,b6-room-3), manipulate-stateless(b6), move(b6-room-3,room-3)〉
Utterance: go into the room on your right
Visible objects: 〈door7,door11〉
Reaction: 〈move(room-3,d11-room-3), move(d11-room-3,d11-room-7), move(d11-room-7,room-7)〉
Utterance: the red button left of lamp, click
Visible objects: 〈button7,button11,lamp1,sofa1〉
Reaction: 〈move(room-7,b11-room-7), manipulate(b11), move(b11-room-7,room-7)〉
Utterance: on your right, push the yellow button
Visible objects: 〈button7,button11,lamp1,sofa1〉
Reaction: 〈move(room-7,b10-room-7), manipulate-stateless(b10), move(b10-room-7,room-7)〉
Utterance: hit the blue button in the middle of the yellow and blue button
Visible objects: 〈button7,button11,button9,button8,lamp1,door13〉
Reaction: 〈move(room-7,b8-b9-room-7), manipulate-stateless(b9), move(b8-b9-room-7,room-7)〉
Utterance: go into the room on the right
Visible objects: 〈button7,button11,button9,button8,sofa1,door10,door13〉
Reaction: 〈move(room-7,d10-room-7), move(d10-room-7,d10-room-6), move(d10-room-6,room-6)〉
Utterance: the red button next to the blue button on your right
Visible objects: 〈button13,button14,picture2,door9〉
Reaction: 〈move(room-6,b13-b14-room-6), manipulate(b14), move(b13-b14-room-6,room-6)〉
Utterance: and walk through the hall
Visible objects: 〈button13,button14,picture2,door9〉
Reaction: 〈move(room-6,d9-room-6), move(d9-room-6,d9-room-5), move(d9-room-5,room-5)〉
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